A Homogeneous Distributed Computing Framework for Multi-objective Evolutionary Algorithm
نویسندگان
چکیده
This paper proposes a homogeneous distributed computing (HDC) framework for multi-objective evolutionary algorithm (MOEA). In this framework, multiple processors divide a work into several pieces and carry them out in parallel. Every processor does its task in a homogeneous way so that the overall procedure becomes not only faster but also fault-tolerant and independent to the number of processors. To implement this framework into an evolutionary algorithm, the evolutionary process of multi-objective particle swarm optimization (MOPSO) is employed. The effectiveness of the proposed framework is demonstrated by empirical comparisons between the results with the different numbers of processors, one and four. Seven DTLZ functions are used as benchmark functions and hypervolume, diversity, and evaluation time are used as comparison metrics. The results indicate that the evaluation time is significantly reduced by the proposed framework without any loss of overall solution quality and diversity.
منابع مشابه
Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملAn Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملPresenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.
Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...
متن کامل